Direct Measurement of Cardiac Na+ Channel Conformations Reveals Molecular Pathologies of Inherited Mutations.
نویسندگان
چکیده
BACKGROUND Dysregulation of voltage-gated cardiac Na(+) channels (NaV1.5) by inherited mutations, disease-linked remodeling, and drugs causes arrhythmias. The molecular mechanisms whereby the NaV1.5 voltage-sensing domains (VSDs) are perturbed to pathologically or therapeutically modulate Na(+) current (INa) have not been specified. Our aim was to correlate INa kinetics with conformational changes within the 4 (DI-DIV) VSDs to define molecular mechanisms of NaV1.5 modulation. METHOD AND RESULTS Four NaV1.5 constructs were created to track the voltage-dependent kinetics of conformational changes within each VSD, using voltage-clamp fluorometry. Each VSD displayed unique kinetics, consistent with distinct roles in determining INa. In particular, DIII-VSD deactivation kinetics were modulated by depolarizing pulses with durations in the intermediate time domain that modulates late INa. We then used the DII-VSD construct to probe the molecular pathology of 2 Brugada syndrome mutations (A735V and G752R). A735V shifted DII-VSD voltage dependence to depolarized potentials, whereas G752R significantly slowed DII-VSD kinetics. Both mutations slowed INa activation, although DII-VSD activation occurred at higher potentials (A735V) or at later times (G752R) than ionic current activation, indicating that the DII-VSD allosterically regulates the rate of INa activation and myocyte excitability. CONCLUSIONS Our results reveal novel mechanisms whereby the NaV1.5 VSDs regulate channel activation and inactivation. The ability to distinguish distinct molecular mechanisms of proximal Brugada syndrome mutations demonstrates the potential of these methods to reveal how inherited mutations, post-translational modifications, and antiarrhythmic drugs alter NaV1.5 at the molecular level.
منابع مشابه
Temperature-dependent model of human cardiac sodium channel
Cardiac sodium channels are integral membrane proteins whose structure is not known at atomic level yet and their molecular kinetics is still being studied through mathematical modeling. This study has focused on adapting an existing model of cardiac Na channel to analyze molecular kinetics of channels at 9-37°C. Irvine et al developed a Markov model for Na channel using Neuronal Network Model ...
متن کاملMolecular motions that shape the cardiac action potential: Insights from voltage clamp fluorometry.
Very recently, voltage-clamp fluorometry (VCF) protocols have been developed to observe the membrane proteins responsible for carrying the ventricular ionic currents that form the action potential (AP), including those carried by the cardiac Na(+) channel, NaV1.5, the L-type Ca(2+) channel, CaV1.2, the Na(+)/K(+) ATPase, and the rapid and slow components of the delayed rectifier, KV11.1 and KV7...
متن کاملTemperature-dependent model of human cardiac sodium channel
Cardiac sodium channels are integral membrane proteins whose structure is not known at atomic level yet and their molecular kinetics is still being studied through mathematical modeling. This study has focused on adapting an existing model of cardiac Na channel to analyze molecular kinetics of channels at 9-37°C. Irvine et al developed a Markov model for Na channel using Neuronal Network Model ...
متن کاملThe cardiac sodium channel: gating function and molecular pharmacology.
Cardiac sodium (Na) channels are dynamic molecules that undergo rapid structural changes in response to the changing electrical field in the myocardium. Inherited mutations in SCN5A, the gene encoding the cardiac Na channel, provoke life-threatening cardiac arrhythmias, often by modifying these voltage-dependent conformational changes. These disorders (i.e. the long QT syndrome and Brugada synd...
متن کاملInherited sodium channelopathies: models for acquired arrhythmias?
VOLTAGE-GATED Na channels, transmembrane proteins that produce the ionic current responsible for the rapid upstroke of the cardiac action potential, are key elements required for rapid conduction through the myocardium and maintenance of the cardiac rhythm. As such, inherited mutations in SCN5A, the gene encoding the human cardiac Na channel (hH1; Fig. 1), are associated with a range of life-th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation. Arrhythmia and electrophysiology
دوره 8 5 شماره
صفحات -
تاریخ انتشار 2015